Effective elastic constants of layered vegetal parenchyma tissues and sclerenchyma fibres, relationship with cellular microscopic features. Non-invasive ultrasonic techniques.

M. D. Fariñas and T. E. Gómez Álvarez-Arenas
Sensors and Ultrasonic Technologies Dept.
ITEFI, Spanish National Research Council.
CSIC
Overview

I. Through transmission: Normal incidence, One layer approach
 Effective elastic properties of plant leaves

II. Through transmission: Normal incidence, Layered approach
 Effective properties of every layer.

III. Through transmission: Oblique incidence, Layered approach
 Shear properties.

IV. Guided waves: Properties of sclerenchyma fibers
I. Through transmission:
 Normal incidence
 One layer approach
 Effective properties
Experimental set-up through transmission.

Ultrasonic Tx and Rx that operate in air. Completely contactless and non-invasive.

Different length scales:

Measurement area 10-100 mm²

Wavelength: 100 – 800 μm

Displacements: nm scale

Ultrasound velocity & attenuation (0.2 – 1.5 MHz)

Excitation and sensing of leaf thickness resonances. One effective layer approach.

Upper epidermis
Pallisade parenchyma
Spongy mesophyll
Lower epidermis

Velocity = 348 m/s
Density = 1050 kg/m³
Thickness = 680 μm
Attenuation = 231 Np/m
Ultrasonic effective properties of plant leaves
Analysis of the first thickness resonance.

<table>
<thead>
<tr>
<th>Species</th>
<th>Density (kg/m³)</th>
<th>Resonant frequency (kHz)</th>
<th>Velocity (m/s)</th>
<th>Attenuation (Np/m)</th>
<th>C_{33} (MPa)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prunus laurocerasus</td>
<td>780</td>
<td>275 ± 4 283 ± 4</td>
<td>255 ± 5 270 ± 15</td>
<td>910 ± 10 800 ± 70</td>
<td>48.9 + 13.1i 54.4 + 13.4i</td>
<td>1.5</td>
</tr>
<tr>
<td>Ligustrum lucidum</td>
<td>950</td>
<td>265 ± 4 260 ± 4</td>
<td>196 ± 3 287 ± 3</td>
<td>790 ± 10 416 ± 10</td>
<td>35.5 + 6.6i 77.0 + 11.3 i</td>
<td>1.9</td>
</tr>
<tr>
<td>Populus x. euroamericana</td>
<td>870</td>
<td>730 ± 4 598 ± 4</td>
<td>365 ± 5 351 ± 5</td>
<td>1420 ± 40 1140 ± 50</td>
<td>100.2 + 22.9i 92.8 + 20i</td>
<td>1.9</td>
</tr>
<tr>
<td>Platanus hispanica</td>
<td>780</td>
<td>640 ± 4 805 ± 4</td>
<td>275 ± 5 369 ± 9</td>
<td>3200 ± 100 2070 ± 100</td>
<td>57.1 + 26.2i 110.6 + 34.2i</td>
<td>2.2</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>860</td>
<td>659 ± 4</td>
<td>341 ± 9 991 ± 50</td>
<td>98.0 + 16.1i</td>
<td>1.75</td>
<td></td>
</tr>
<tr>
<td>Epipremnum aureum</td>
<td>890</td>
<td>264 ± 4</td>
<td>194 ± 9 590 ± 10</td>
<td>33.0 + 4.6i</td>
<td>1.75</td>
<td></td>
</tr>
</tbody>
</table>

Available data:
Parenchyma cells: 8-12 MPa
Aerenchyma and collenchyma cells: 2-22 MPa
Querqus leaves: 50-200 MPa.

\[a = a_0 (f/f_{res})^n \]

n = 2, classical viscoelasticity

5th International Conference on Mechanics of Biomaterials and Tissues
Sitges, Spain, 8-12 December 2013, www.us-biomat.com
II. Through transmission:
Normal incidence.
Layered approach.
Effective properties of every layer.
Leaf thickness resonances. Layered tissue approach.

Upper epidermis
Pallisade parenchyma
Spongy mesophyll
Lower epidermis

5th International Conference on Mechanics of Biomaterials and Tissues
Sitges, Spain, 8-12 December 2013, www.us-biomat.com
Leaf thickness resonances. Layered tissue approach
Glossy privet leaves, 680 and 430 μm thick.

Upper epidermis
Pallisade parenchyma
Spongy mesophyll
Lower epidermis

Ligustrum Lucidium II

V = 347 m/s
ρ = 1047 kg/m3
α = 241 Np/m
n = 1.8

V = 240 m/s
ρ = 860 kg/m3
α = 790 Np/m
n = 1.4

5th International Conference on Mechanics of Biomaterials and Tissues
Sitges, Spain, 8-12 December 2013, www.us-biomat.com
Leaf thickness resonances. Layered tissue approach.

Dicot.

Monocot.

Epipremnum aureum

Phormium tenax

5th International Conference on Mechanics of Biomaterials and Tissues
Sitges, Spain, 8-12 December 2013, www.us-biomat.com
Leaf thickness resonances. Layered tissue approach.

<table>
<thead>
<tr>
<th>Species</th>
<th>V (m/s)</th>
<th>Young’s mod (MPa)</th>
<th>Young’s mod. cell wall (GPa.)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PP</td>
<td>PP</td>
<td>SM</td>
</tr>
<tr>
<td>Hedera Helix</td>
<td>492</td>
<td>199,6</td>
<td>14,3</td>
</tr>
<tr>
<td>Ligustrum Lucidum</td>
<td>324</td>
<td>91,9</td>
<td>10,7</td>
</tr>
<tr>
<td>Viburnum Tinus</td>
<td>452</td>
<td>205,2</td>
<td>10,5</td>
</tr>
<tr>
<td>Magnolia Grandiflora</td>
<td>468</td>
<td>196,7</td>
<td>58,2</td>
</tr>
<tr>
<td>Epipremnum aureum</td>
<td>500</td>
<td>192,6</td>
<td>29,1</td>
</tr>
<tr>
<td>Nicotina tabacum</td>
<td>95</td>
<td>6,5</td>
<td>2,2</td>
</tr>
<tr>
<td>Vitis vinifera</td>
<td>380</td>
<td>138,8</td>
<td>37,1</td>
</tr>
<tr>
<td>Syringa Vulgaris</td>
<td>400</td>
<td>108,1</td>
<td>8,6</td>
</tr>
<tr>
<td>Prunus laurocerasus</td>
<td>420</td>
<td>120,7</td>
<td>25,2</td>
</tr>
</tbody>
</table>

Palisade parenchyma

Spongy mesophyl

5th International Conference on Mechanics of Biomaterials and Tissues
Sitges, Spain, 8-12 December 2013, www.us-biomat.com
III. Through transmission:
Oblique incidence
Layered approach
Shear properties.
Through transmission, oblique incidence.
Generation of shear waves: Modulus of rigidity and Poisson’s ratio

Transmitter transducer

Leaf

Receiver transducer

100-400V
+59 dB
Pulser Receiver Sync.

Scope

5th International Conference on Mechanics of Biomaterials and Tissues
Sitges, Spain, 8-12 December 2013, www.us-biomat.com
Through transmission, oblique incidence.

Generation of shear waves: Modulus of rigidity and Poisson’s ratio

<table>
<thead>
<tr>
<th>Species</th>
<th>Layer</th>
<th>C_{33} (MPa)</th>
<th>Shear Modulus (MPa)</th>
<th>n</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vitis vinifera</td>
<td>Palisade parenchyma</td>
<td>186 + 38.6i</td>
<td>55.7 + 9.9i</td>
<td>1.8</td>
</tr>
<tr>
<td></td>
<td>Spongy mesophyl</td>
<td>69.1 + 9.5i</td>
<td>12.1 + 1.2i</td>
<td>2.0</td>
</tr>
<tr>
<td>Epipremnum aureum</td>
<td>Palisade parenchyma</td>
<td>192.6 + 45.5i</td>
<td>48.1 + 11.6i</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>Spongy mesophyl</td>
<td>13.5 + 1.4i</td>
<td>34.1 + 3.6i</td>
<td>2.0</td>
</tr>
</tbody>
</table>

Poison’s ratio: 0.33-0.34

Shear Modulus, available data: 2-22 MPa
Poisson’s ratio, available data: 0.28 lignin, 0.18-0.4 onion epidermis, 0.23-0.5 parenchyma tissues

IV. Guided waves:
Properties of sclerenchyma fibers
Ultrasonic guided waves in sclerenchyma fibers.

Phormium tenax (flax, New Zealand flax)
Ultrasonic guided waves in sclerenchyma fibers.

Previous results, different techniques

J. L. Vincent et al. (1996)

- Mechanical test
 \[E_{\text{leaf-long}} = 3.98 \pm 0.7 \text{ GPa} \]
 \[E_{\text{fibre}} = 31.4 \text{ GPa} \]
 \[E_{\text{cell-wall}} = 71.4 \text{ GPa} \]

- Shock waves (5 kHz)
 \[v = 2354 \pm 191 \text{ m/s} \]
 \[E_{\text{leaf-long}} = 4.1 \pm 0.7 \text{ GPa} \]

Ultrasonic guided waves (250 kHz)

\[v = 2250 \pm 170 \text{ m/s} \]
\[E_{\text{leaf-long}} = 3.76 \pm 0.7 \text{ GPa} \]
Summary

<table>
<thead>
<tr>
<th>Tissue</th>
<th>Cells features.</th>
<th>Tissue</th>
<th>Cell wall</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>us velocity (Long. / Shear)</td>
<td>E. Modulus (Young/Shear)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(m/s)</td>
<td>(MPa)</td>
</tr>
<tr>
<td>Palisade parenchyma.</td>
<td></td>
<td>300 – 500</td>
<td>95 – 200</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 – 245</td>
<td>12 - 60</td>
</tr>
<tr>
<td>Spongy mesophyll.</td>
<td></td>
<td>125 – 390</td>
<td>10 – 60</td>
</tr>
<tr>
<td></td>
<td></td>
<td>80 – 130</td>
<td>3.0 - 15</td>
</tr>
<tr>
<td>Sclerenchyma fibres.</td>
<td></td>
<td>1950-2500</td>
<td>2800 - 4600</td>
</tr>
</tbody>
</table>

*5th International Conference on Mechanics of Biomaterials and Tissues
Sitges, Spain, 8-12 December 2013,
www.us-biomat.com*
APPLICATIONS AND FUTURE WORK

Determination of water content or turgor pressure in vegetal tissues
Watering control in wineyards.

Study of structure properties relationships:
Development of biomimetic structural or functional composites

Determination of biomass content.

Monitoring of plant growth, plant response to stimuli.

Determination of the elastic properties of vegetal fibres.
Acknowledgments:

- Julian F. V. Vincent, Reading University, U. K.
- Lorna Gibson, MIT, Cambridge, MA, USA.
- Karl J. Niklas, Cornell University, NY, USA.

Funding by the Spanish Ministry of Economy:
Project INNPACTO IPT-2012-1022-310000 (SOST-WINE)
Project: DPI2011-22438 (NOVTUL)
Thank you

Q & A